

High-performance Video Signal Switchers

Broadband Triple Circuits Video Signal Switchers BA7657S/F, BH7659FS

Description

The BA7657S, BA7657F, and BH7659FS are ICs that have been developed for use in PC monitors, HDTVs (high definition televisions), and other high-resolution display devices. In addition to their wide-range switching circuits for RGB signals, HD signals, and VD signals, the BA7657S and BA7657F feature a separation (BUNRI) circuit for the synchronization signal that is superposed on the G signal, while the BH7659FS features an on-chip switch for I^2C bus signals (SDA and SCL). These ICs can be used to simplify the input block configuration in advanced display devices.

Features

- 1) Operates on 5 V single power supply.
- 2) Built-in wide-range RGB signal switches. (BA76

(BA7657S/F: fc = 230 MHz) (BH7659FS: fc = 250 MHz)

- 3) Built-in switching circuit for HD signal and VD signal.
- 4) Built-in separation (BUNRI) circuit for synchronization signal superposed on G signal. (BA7657S/F)
- 5) Built-in switch for I²C bus signals (SDA and SCL). (BH7659FS)
- 6) Built-in power saving function. (BH7659FS)

•Use

PC monitors, Plasma displays, LCD monitors, and Other devices that use wide-range RGB signal switching.

●Lin<u>eup</u>

Parameter	BA7657S/F	BH7659FS
Circuit current (mA)	35	25
Circuit current during low-power mode (mA)		14
RGB signal SW block frequency characteristics (MHz)	230	250
Synchronization signal SW block circuit configuration	2 digital switching circuits	4 CMOS analog switching circuits
Synchronization signal separation circuit	\checkmark	
Package	SDIP24/SOP24	SSOP-A32

•Absolute Maximum Ratings (Ta=25°C)

•							
Parameter		Symbol	Limits	Unit			
Supply voltage		Vcc	8.0	V			
Davias	BA7657S		1200				
Power dissipation	BA7657F	Pd	550	mW			
	BH7659FS		800				
Operating temperature		Topr	-25~+75	°C			
Storage temperature		Tstg	-55~+125	°C			

※Deratings is done at 12mW/℃ (BA7657S), 5.5mW/℃ (BA7657F), 8mW/℃ (BA7659FS) above Ta=25℃.

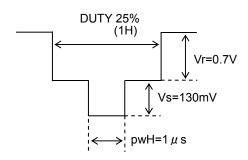
•Operating Range (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V

%This product is not designed for protection against radioactive rays.

BA/65/5/F				(Unless o	therwise n	oted, Ta=25°C, Vcc=5.0V)
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Circuit current	ICC	20	35	50	mA	
<pre>〈Analog SW block〉</pre>						
Maximum output level	Vom	2.8	_	_	VP-P	f=1kHz
Voltage gain	Gv	-1.0	-0.5	0	dB	f=1MHz,VIN=1VP-P
Input pin voltage gain differential	ΔGvi	-0.2	0	0.2	dB	f=1MHz,VIN=1VP-P
Inter block voltage gain differential	Gvв	-0.2	0	0.2	dB	f=1MHz,VIN=1VP-P
Input pin cross talk1	CTI1	_	-50	-40	dB	f=10MHz,VIN=1VP-P
Interblock crosstalk1	CTB1		-50	-40	dB	f=10MHz,VIN=1VP-P
<pre>〈Digital SW block〉</pre>	·					
"H" level input voltage	Vін	1.8	_	_	V	
"L" level input voltage	VIL	_		1.2	V	
"H" level input current	Ін	80	100	130	μA	VIN=5.0V
"L" level input current	lı∟	-3	-1	_	μA	VIN=0V
Rise time	TR	_	30	50	ns	
Fall time	TF		30	50	ns	
Rise delay time	Trd		50	80	ns	
Fall delay time	Tfd	_	30	50	ns	
"H" level output voltage	Vон	3.0	3.7	_	V	
"L" level output voltage	Vol		0.2	0.4	V	
"H" level output current	Іон	-400	_	_	μA	
"L" level output current	Iol	5		_	mA	
Synchronization signal separation	n block>					
Minimum SYNC separation level	VSMin.	-50	_	50	mVp-p	
"H" level output voltage	Vон	4.5	5.0	_	V	
"L" level output voltage	Vol		0.2	0.5	V	
"L" level output current	Iol	2	_	_	mA	
Rise time	Tr		80	130	ns	
Fall time	TF		30	80	ns	
Rise delay time	Trd		100	150	ns	
Fall delay time	Tfd	_	100	150	ns	
<pre> Control block </pre>						
"H" level input voltage	Vін	1.8			V	
"L" level input voltage	VIL	_		1.2	V	
"H" level input current	Ін	80	100	130	μA	
"L" level input current	lı∟	-3	-1		μA	

Guaranteed design parameter	rs	(Unless otherwise noted, Ta=25°C, Vcc=5.0V)								
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions				
〈Analog SW block〉										
Input pin cross talk 2	CTI2	_	-30	-15	dB	f=230kHz, VIN=1VP-P				
Interblock cross talk 2	CTB2		-30	-15	dB	f=230MHz,VIN=1VP-P				
Frequency characteristic	Gf	-6	-3	-1	dB	f=1MHz/230MHz, VIN=1VP-P				
Input pin frequency differential	∆Gfl	-1	0	+1	dB	f=1MHz/100MHz, VIN=1VP-P				
Interblock frequency characteristic differential	∆GfB	-1	0	+1	dB	f=1MHz/100MHz, VIN=1VP-P				
<pre>SYNC separation block></pre>										
SYNC separation frequency	fH-R	200		_	kHz	Input waveform ※1				
SYNC separation pulse width 1	pwH1	3.0		_	μS	Input waveform				
SYNC separation pulse width 2	pwH2	0.5			μS	Input waveform				
SYNC separation pulse width 3	pwH3	0.3		_	μS	Input waveform				
SYNC separation level 1	VS1	300		_	μS	Input waveform				
SYNC separation level 2	VS2	100		_	μS	Input waveform				
SYNC separation level 3	VS3	60			μS	Input waveform				


(Input waveform)

%1 Vs and pwH are variable. Vs and pwH are inter-related. See the characteristics diagram.

2 Vs = 130 mW and pwH are variable.

3 pwH = 1 μ s and Vs are variable.

Period of horizontal synchronization signal

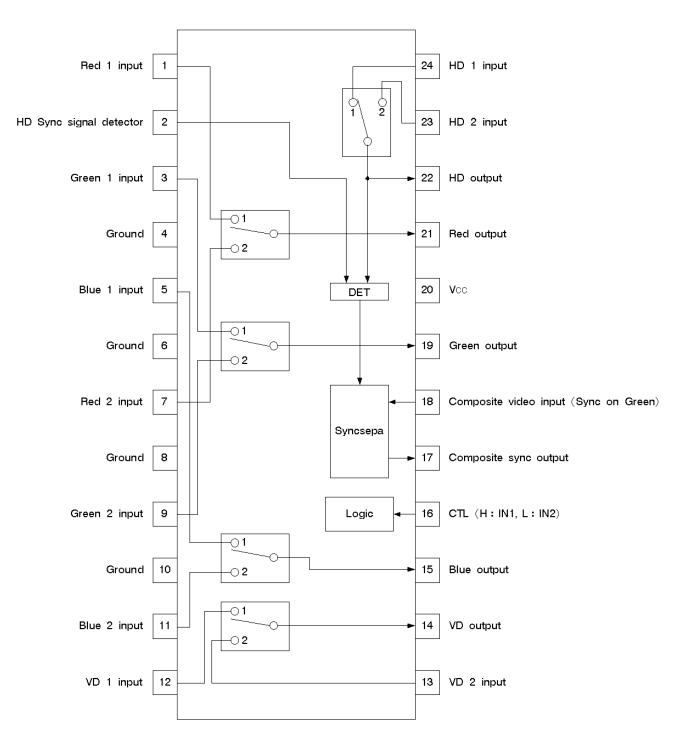


Fig.1

Pin No.	Pin name	Reference potential	Equivalent circuit	Function
1 3	Red1 Input Green1 Input	0.71/	Vcc	2-channel switching of R, G, and B signals.
5	Blue1 Input	3.7V when selected 0V	100 \$6.8k	Select between: CTL: H input1
7	Red2 Input	when not selected		CTL: L input2
9	Green2 Input	Selected		
11	Blue2 Input			
15 19	Blue output Green output	2.0V		Output pins for RGB signals. Insert resistance from 100 to $300 \ \Omega$ near the pins to
21	Red output		400 \$\sqrt{5_mA}	suppress f peaks at high frequencies.
16	Control	H≧1.8V L≦1.2V	Vec Vec 35k 35k 1k 50k 50k 15k 15k	CTL pins Select between: CTL: H input1 CTL: L input2
12	VD1 input		Vcc	
13	VD2 input	H≧1.8V	↓ ↓ ↓ ↓ ↓ 35k	2-channel switching of VD and HD signals.
23	HD2 input	L≦1.2V	12, 13 23, 24pin x 50k 5 x	Select between: CTL: H input1
24	H⊡1 input			CTL: L input2
14 22	VD output HD output	Vон≧3.0V Vo∟≦10.5V	2.0k 100 14, 22pin 1.2k 660 707 707 707 707 707 707 707	Output pins for vertical synchronization signal (VD) And horizontal synchronization signal (HD).

Pin No.	Pin name	Reference potential	Equivalent circuit	Function
18	Composite Video input	2.5V	V ₂ C	Input pin for composite signal (Sync on Green).
2	HD Sync Signal detector	_	from HD out to sync sepa	This pin is used to detect whether or not the HD signal is being input. When the HD signal is being input, the synchronization signal separation circuit is stopped.
17	Composite sync output	_	17pin	Synchronization signal output pin Synchronization separation is performed for the input signal from pin 18 if the HD signal is not being input.
20	Vcc	5V	_	Insert a decoupling capacitor near the pin.
4 6 8	GND	ΟV	_	Use as large a GND pattern area as possible.

•Description of operations

BA7657S/F

1) Analog SW block

Two channels of RGB signals can be switched. IN1 can be selected when high-level voltage is applied to the CTL pin, and IN2 can be selected when low level voltage is applied.

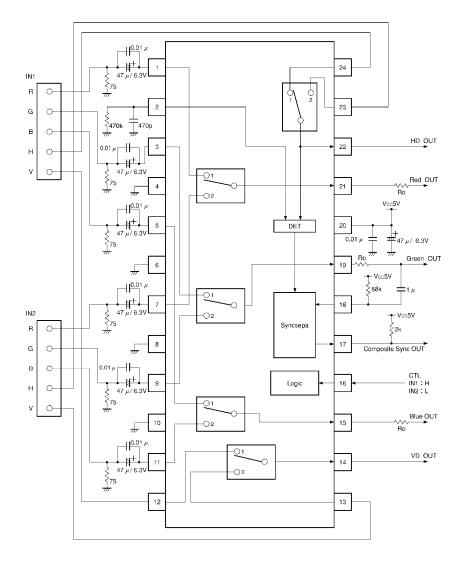
2) Digital SW block

This block switches between two channels of HD and VD synchronization signals.

HD and VD synchronization signals are output for IN1 when high-level voltage is applied to the CTL pin, and these signals are output for IN2 when a low-level voltage is applied to the CTL pin.

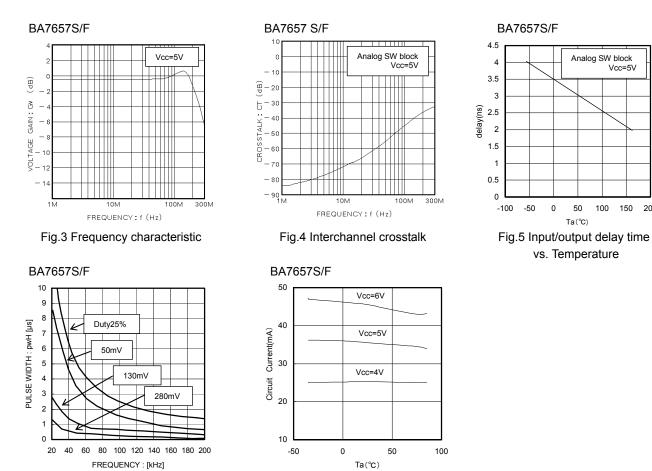
3) Synchronization signal separation block

Input			Output				
HD	VD	Sync on Green	HD	VD	Composite Sync		
_	—	0	_	_	0		
0	—	0	0	_	_		
_	0	0	_	0	0		
0	0	0	0	0	—		
0	—	_	0	_	—		
_	0	_	—	0	_		
0	0	_	0	0	—		


This block separates composite signals (Sync on Green) and synchronization signals and outputs positive-electrode composite synchronization signals.

When an HD signal is being input, the synchronization signal detector operates and stops the synchronization signal separation circuit. A low-level output voltage is used for output.

The time at which the synchronization signal separation circuit will be stopped can be set using external time constants for the circuit detection pin.


Application circuit

BA7657S/F

I/O relations

•Reference data

Analog SW block Vcc=5V

50 100 150 200

Fig.6 Minimum SYNC separation characteristic

Fig.7 Quiescent current vs. Temperature

BH7659FS

(Unless otherwise noted, Ta=25°C, Vcc=5.0V)

				1		1			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions			
<pre><entire device=""></entire></pre>	(Entire device)								
Circuit current	ICc	15	25	35	mA	_			
Circuit current during power	IPSV	7	14	22	mA	PS="H"			
save									
<pre> (R,G,B video SW)</pre>									
Voltage gain	Gv	-1.0	-0.5	0	dB	f=10MHz			
Interchannel relative gain	∆Gvc	-0.5	0	0.5	dB	f=10MHz			
Interblock relative gain	∆Gvв	-0.5	0	0.5	dB	f=10MHz			
Output dynamic range	Vом	2.6	—	—	VP-P	f=1kHz			
⟨C-MOS analog SW⟩									
On-resistance	Ron	—	200	400	Ω	VIN=2.5V			
Interchannel ON resistance	ΔRon	_	20	40	Ω	VIN=2.5V			
differential									
Interchannel cross talk	СТ	_	-70	-55	dB	f=150kHz			
Transmission delay time	tD	—	20	—	ns	RL=100 Ω ,CL=50pF			
(Control block)									
"H" level voltage	Vн	3.5	_	_	V	_			
"L" level voltage	VL	_	_	1.5	V	-			

•Guaranteed design parameters

BH7659FS

(Unless otherwise noted, Ta=25°C, Vcc=5.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
<pre> (R/G/B video SW)</pre>						
Frequency characteristics 1	f1	-3.0	0	+1.0	dB	f=50MHz
Frequency characteristics 2	f2	-6.0	-3	-1.0	dB	f=250MHz
Interchannel relative frequency	∆fc	-0.5	0	0.5	dB	f=50MHz
characteristics						
Interblock relative frequency	∆fв	-0.5	0	0.5	dB	f=50MHz
characteristics						
Interchannel cross talk 1	CTc1	_	-50	-35	dB	f=50kHz
Interchannel cross talk 2	CTc2	_	-30	-15	dB	f=250MHz
Interblock cross talk 1	CT _{B1}	_	-50	-35	dB	f=50MHz
Interblock cross talk 2	CT _{B2}	_	-30	-15	dB	f=250MHz

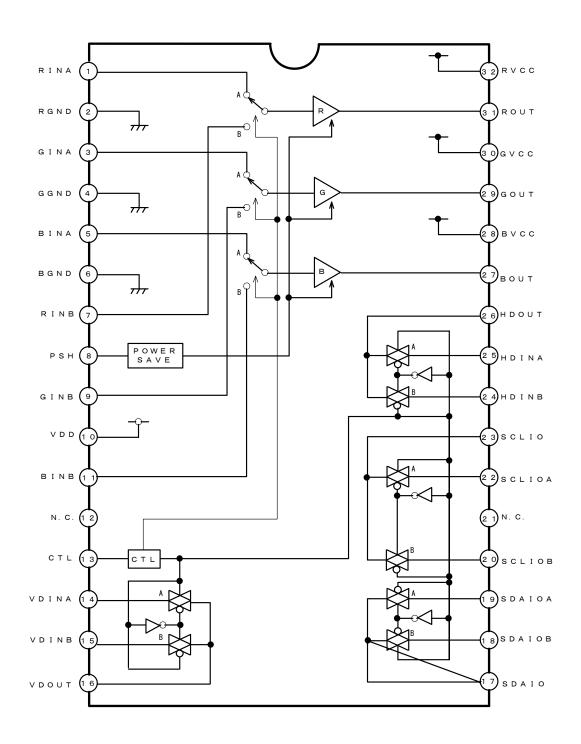


Fig.8

BH7659FS

Pin No.	Pin name	Reference potential	Equivalent circuit	Function
1	R chroma signal input pin A (RINA)			
3	G chroma signal input pin A (GINA)	3.5V		RGB signals are switched in two channels.
5	B chroma signal input pin A (BINA)	when selected		When selected by SW, the DC potential is
7	R chroma signal input pin B (RINB)	0V when not	3.7V + /// + /	approximately 3.5V, and when
9	G chroma signal input pin B (GINB)	selected		not selected, the DC potential is about 0 V.
11	B chroma signal input pin B (BINB)			
27	B chroma signal input pin (BOUT)			
29	G chroma signal input pin (GOUT)	1.85V		Power save function is used when PSH pin is set to high
31	R chroma signal input pin (ROUT)			level.
8	Power save input pin			PSH Pin Power save off $\leq 1.5V$
	(PSH)	0) (Power save on $\geq 3.5V$
13	Control input pin (CTL)	0V		CTL Pin
	()		★ 50k ≤	Input A≧3.5V Input B≦1.5V
				•

BH7659FS

Pin No.	Pin name	Reference	Equivalent circuit	Function
14 15 16 17 18 19 20 22 23 24 25 26	VD signal input pin A (VDINA) VD signal input pin B (VDINB) VD signal output pin (VDOUT) SDA signal output pin (SDAIO) SDA signal input pin B (SDAIOB) SDA signal input pin A (SDAIOA) SCL signal input pin B (SCLIOB) SCL signal input pin A (SCLIOA) SCL signal output pin (SCLIO) HD signal input pin B (HDINB) HD signal input pin A (HDINA) HD signal output pin (HDOUT)	0V		
2	R GND pin (RGND)	0V	_	This is the GND pin for the R video SW block.
4	G GND pin (GGND)	0V	_	This is the GND pin for the B video SW block.
6	B GND pin (BGND)	0V	_	This is the GND pin for the G video SW block , C-MOS SW block.
10	C-MOS supply voltage pin (VDD)	5V	_	This is the VDD pin for the C-MOS SW block.
28	B supply voltage pin (BVcc)	5V	_	This is the Vcc pin for the B video SW block
30	G supply voltage pin (GVcc)	5V	_	This is the Vcc pin for the G video SW block
32	R supply voltage pin (RVcc)	5V	_	This is the Vcc pin for the R video SW block

•Description of operations

BH7659FS

1) Analog SW block

R, G, and B chroma signals are switched in two channels.

INA is selected by applying a high-level voltage to the CTL pin, and INB is selected by applying a low-level voltage. When the power save pin (pin 8) is set to high level, the current to the SW block's output transistors is reduced to lower the circuit current.

Even during low power mode, signal switching can be performed normally as long as there is no drop in frequency characteristics.

2) CMOS analog SW block

SDA and SDC signals are switched via an I^2C bus to handle two channels of HD and VD synchronization signals, and to exchange information bidirectionally between a computer and a monitor.

The switching circuits used by this IC handle are configured as CMOS analog switches in order to handle I^2C BUS signals and to transmit input and output signals bidirectionally. (ON resistance: Ron 200 Ω typ.)

Application circuit

BH7659FS

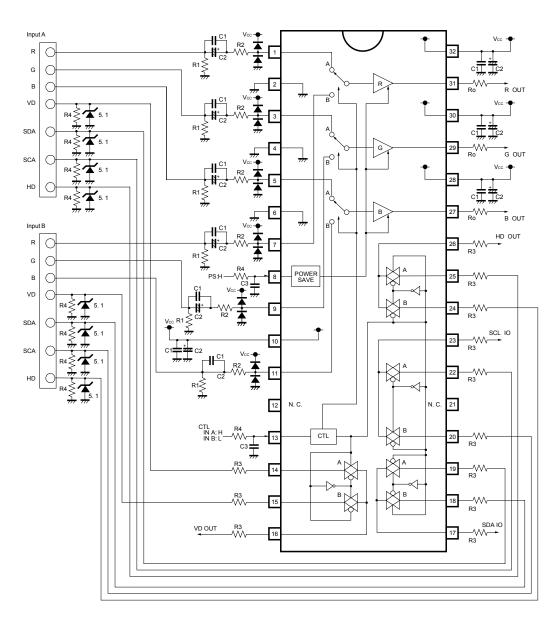
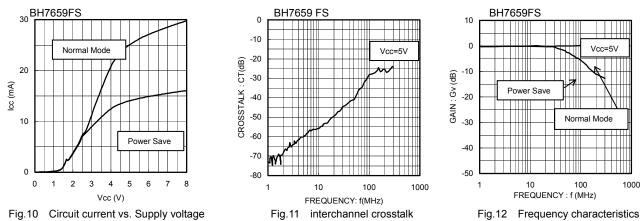



Fig.9

Reference data

•Cautions on use (1/2)

[BA7657S/F, BH7659FS]

- 1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
- 2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
- 3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.

4) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.

5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.

6) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.

7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

[BA7657S/F]

8) External resistance for analog SW block

The frequency characteristics of analog switches vary according to the output load capacity.

Set an external resistance value of R0 to keep frequency characteristics as flat as possible.

9) Polarity of input coupling capacitor

When this IC is switched, variation is approximately 3.7 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected.

Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.

10) High-frequency characteristics of input coupling capacitor

Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately $0.01 \ \mu\text{F}$) in parallel.

11) Layout of target board

Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.

12) Switching speed

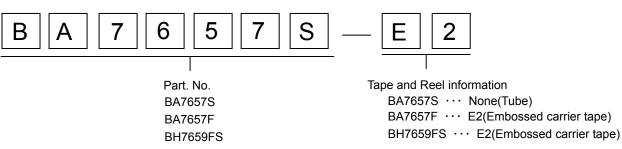
Since this IC changes the DC voltage of input pins when switching, some time is required for switching. The amount of switching time can be determined by time constants that are in turn determined by the capacity of the coupling capacitor connected to the input pin, and the IC's internal input resistance.

When using the recommended input coupling capacitor whose capacitance is 47 μ F, the switching time is approximately 0.5 seconds.

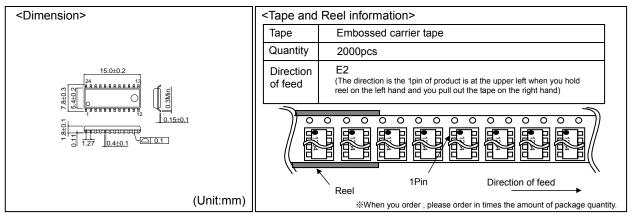
•Cautions on use (2/2)

[BH7659FS]

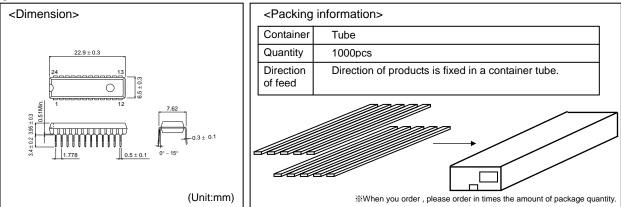
External resistance for analog SW block The frequency characteristics of analog switches vary according to the output load capacity. Set an external resistance value of R0 to keep frequency characteristics as flat as possible.

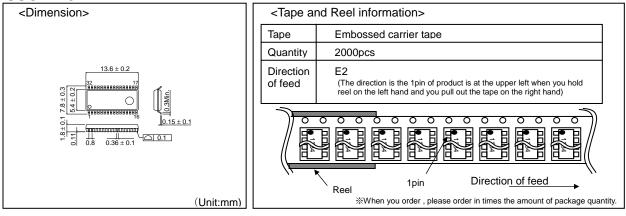

Polarity of input coupling capacitor When this IC is switched, variation is approximately 3.5 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.

15) High frequency characteristics of input coupling capacitor Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately 0.01 μF) in parallel.


16) Layout of target board

Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.


Selection of order type


SOP24

SDIP24

SSOP-A32

- The contents described herein are correct as of August, 2008
- The contents described herein are subject to charge without notice. For updates of the latest information, please contact and confirm with ROHM CO.LTD.
 Any part of this application note must not be duplicated or copied without our permission.
 Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams and information, described herein, are intended only as illustrations of such devices and not as the specifications for such devices, BOHM, CO., LTD, disclaims any warranty that any use of such devices shall be free from infingement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
- The products described herein utilize silicon as the main material.
 The products described herein are not designed to be X ray proof.

San Di

Atlant Bosto Dallas Denve

Detroi

Nashv

Mexico Düsse

Munic Stuttg Franc United I

Denma Espoo Salo

Oulu Barce Hunga

Polanc

Russia Seoul Masan

Dalian

Beijing

- The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Contact us for further information about the products.

Excellence in Electronics

ROHM CO., LTD.

21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL:+81-75-311-2121 EAX:+81-75-315-0172 URL http://www.rohm.com

Published by KTC LSI Development Headquarters LSI Business Pomotion Group

		indicit discut i
iego	TEL: +1-858-625-3630	FAX: +1-858-625-3670
а	TEL: +1-770-754-5972	FAX: +1-770-754-0691
n	TEL: +1-978-371-0382	FAX: +1-928-438-7164
go	TEL: +1-847-368-1006	FAX: +1-847-368-1008
_	TEL: +1-469-287-5366	FAX: +1-469-362-7973
r	TEL: +1-303-708-0908	FAX: +1-303-708-0858
t	TEL: +1-248-348-9920	FAX: +1-248-348-9942
rille	TEL: +1-615-620-6700	FAX: +1-615-620-6702
0	TEL: +52-33-3123-2001	FAX: +52-33-3123-2002
ldorf	TEL: +49-2154-9210	FAX: +49-2154-921400
h	TEL: +49-8999-216168	FAX: +49-8999-216176
art	TEL: +49-711-7272-370	FAX: +49-711-7272-3720
е	TEL: +33-1-5697-3060	FAX: +33-1-5697-3080
Kingdom	TEL: +44-1-908-306700	FAX: +44-1-908-235788
ark	TEL: +45-3694-4739	FAX: +45-3694-4789
)	TEL: +358-9725-54491	FAX: +358-9-7255-4499
	TEL: +358-2-7332234	FAX: +358-2-7332237
	TEL: +358-8-5372930	FAX: +358-8-5372931
lona	TEL: +34-9375-24320	FAX: +34-9375-24410
ary	TEL: +36-1-4719338	FAX: +36-1-4719339
d	TEL: +48-22-5757213	FAX: +48-22-5757001
a	TEL: +7-495-739-41-74	FAX: +7-495-739-41-74
	TEL: +82-2-8182-700	FAX: +82-2-8182-715
ı	TEL: +82-55-240-6234	FAX: +82-55-240-6236
r i i i i i i i i i i i i i i i i i i i	TEL: +86-411-8230-8549	FAX: +86-411-8230-8537
g	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489

	langin
S	hanghai
н	angzhou
N	anjing
N	lingbo
G	lingdao
s	uzhou
v	/uxi
s	henzhen
D	ongguan
F	uzhou
G	iuangzhou
н	uizhou
х	iamen
z	huhai
н	ong Kong
Т	aipei
к	aohsiung
s	ingapore
Р	hilippines
т	hailand
К	uala Lumpur
P	enang
K	yoto

Yokohama

Tianiin

TEL: +86-22-23029181	FAX: +86-22-23029183
TEL: +86-21-6279-2727	FAX: +86-21-6247-2066
TEL: +86-571-87658072	FAX: +86-571-87658071
TEL: +86-25-8689-0015	FAX: +86-25-8689-0393
TEL: +86-574-87654201	FAX: +86-574-87654208
TEL: +86-532-5779-312	FAX:+86-532-5779-653
TEL: +86-512-6807-1300	FAX: +86-512-6807-2300
TEL: +86-510-82702693	FAX: +86-510-82702992
TEL: +86-755-8307-3008	FAX: +86-755-8307-3003
TEL: +86-769-8393-3320	FAX: +86-769-8398-4140
TEL: +86-591-8801-8698	FAX: +86-591-8801-8690
TEL: +86-20-3878-8100	FAX: +86-20-3825-5965
TEL:+86-752-205-1054	FAX: +86-752-205-1059
TEL: +86-592-238-5705	FAX: +86-592-239-8380
TEL: +86-756-3232-480	FAX: +86-756-3232-460
TEL: +852-2-740-6262	FAX: +852-2-375-8971
TEL: +886-2-2500-6956	FAX: +886-2-2503-2869
TEL: +886-7-237-0881	FAX: +886-7-238-7332
TEL: +65-6332-2322	FAX: +65-6332-5662
TEL: +63-2-807-6872	FAX: +63-2-809-1422
TEL: +66-2-254-4890	FAX: +66-2-256-6334
TEL: +60-3-7958-8355	FAX: +60-3-7958-8377
TEL: +60-4-2286453	FAX: +60-4-2286452
TEL: +81-75-365-1218	FAX: +81-75-365-1228
TEL: +81-45-476-2290	FAX: +81-45-476-2295

Catalog No.08T293A '08.8 ROHM ©